prepared by means of a coupling reaction which generates a boron-boron bond. In a system of this sort, in which ternary boron is in the presence of potential nucleophiles such as nitrogen and chlorine in unreacted chloroborane, structural rearrangement to the fused cyclic ring system can be envisioned through a fourcenter mechanism.

Experimental Section

Mass Spectra.—An Associated Electrical Industries MS-902 mass spectrometer operating at 70 eV was used to obtain mass spectra. Solid samples were introduced *via* a direct insertion probe. A heated inlet system was employed for liquid samples. Heptacosafluorotributylamine was used as a standard in exact mass determinations.

Materials.—All samples were handled by conventional vacuum line and drybox techniques. A complementary sample of B₂[N- $(CH_3)_2$]₄ was obtained from U. S. Borax Research Corp. The compounds B₂(OCH₃)₄, B₂(O₂C₂H₄)₂, B₂(S₂C₂H₄)₂, and B₂[N₂- $(CH_3)_2C_2H_4$]₂ were prepared using methods described previously in the literature.^{1,8}

 $B_2(SCH_3)_4$.—In a typical experiment, 6.88 mmol of $B_2[N-(CH_3)_2]_4$ was dissolved in 40 ml of CH_2Cl_2 in a 100-ml bulb. Slight excesses (28.00 mmol) each of CH_3SH and HCl were added to the solution at -95° . The bulb was allowed to warm to room temperature over a 4-hr period and stirred continuously for 12 hr. The solvent was removed by fractional distillation at -45° . $B_2(SCH_3)_4$, bp 115° (1-2 mm), a clear colorless liquid, was distilled from the reaction bulb leaving behind a crystalline white solid identified as $(CH_3)_2NH_2Cl$ by its X-ray powder pattern; yield, 95% based upon the amount of salt recovered.

Acknowledgment.—We wish to acknowledge, gratefully, the support of this work by the National Science Foundation.

> Contribution from the Department of Chemistry, East Carolina University, Greenville, North Carolina 27834

The Infrared and Raman Vibrational Spectra and Structure of Potassium *sym-trans-µ*-Ethyleno-bis(pentacyanocobaltate(III))

By W. A. MCALLISTER AND L. T. FARIAS

Received June 5, 1969

In a continuation of our spectroscopic studies on coordination compounds and specifically on compounds with bridging ligands,¹ we have investigated the infrared and Raman spectra of potassium *sym-trans-µ*-ethylenobis(pentacyanocobaltate(III)). Its resemblance to one possible structure of the "red" isomer of the pentaminenitrosylcobalt ion is obvious. One difficulty encountered with the latter compound was the assignment of a possibly symmetrical N–N stretching frequency to a rather strong infrared band. If this ion did contain a *sym-trans-µ*-hyponitrito linkage, this band would be expected to be infrared forbidden. It has so far been impossible to carry out a Raman study using the present laser source, which causes decomposition. It was hoped that through the present study further information could also be obtained involving the structural assignment of the "red" isomer.

The dipentacyanocobalt–ethylene complex could have either the *cis* or *trans* structure. Using steric considerations the *cis* isomer seems unlikely as pointed out in its initial investigation.² However, a strong band at 1622 cm^{-1} was assigned to the C–C stretching mode. Through a complete vibrational analysis involving deuterium-substituted species, we hoped to establish the configuration of this complex.

Experimental Section

Potassium sym-trans- μ -ethyleno-bis(pentacyanocobaltate(111)) was prepared as reported by Griffith and Wilkinson.² We were also able to prepare the identical compound through the reaction of acetylene and the hydridopentacyanocobalt(II) ion.³ The deuterated compound was prepared by carrying out the preparation in D₂O carefully excluding all H₂O. It was hoped that the compound could be prepared with the four waters of crystallization as D₂O and separately with the deuterated ethylenic linkage, but due to exchange this was impossible. The entire system was deuterated using C₂D₂ prepared from calcium carbide and D₂O.

The Raman spectra were recorded on a Cary Model 81 spectrophotometer equipped with a 6328-Å He–Ne laser source. Samples were run only as solids, because the solutions decomposed in the laser beam. The infrared spectra were recorded from 4000 to 200 cm⁻¹ using a Beckman IR-12 spectrophotometer with the calibration checked in the usual manner.^{4,5} Samples were examined as Nujol mulls on KBr plates as well as in KBr and CsI disks. The very far-infrared spectra were recorded on a Beckman IR-11 utilizing samples prepared as Nujol mulls supported between polyethylene plates. Both instruments were purged with dry air. Sharp bands are expected to be within ± 2 cm⁻¹.

Analyses for the compound were performed by Galbraith Laboratories, Knoxville, Tenn. *Anal.* Calcd for $K_{\delta}[Co(CN)_{\delta}]_{2^-}C_2H_2\cdot 4H_2O$: C, 20.3; H, 1.7; N, 19.7. Found: C, 19.0; H, 1.7; N, 20.0. There was no sign of decomposition during the recording of the spectrum. A check was also made for strong bands from $K_{\delta}[CO(CN)_{\delta}]$.

Results and Discussion

The infrared and Raman spectra of $K_6[Co(CN)_5]_2C_2$ - $H_2 \cdot 4H_2O$ and $K_6[Co(CN)_5]_2C_2D_2 \cdot 4D_2O$ were recorded from 4000 to 50 cm⁻¹. This compound is expected from steric considerations to have C_{2h} symmetry about the ethylene linkage and C_{4v} symmetry about each cobalt atom. From the infrared and Raman studies on this compound and its deuterated analog, it was possible unequivocally to confirm these expectations.

Infrared and Raman Spectral Assignment.—In order to simplify the band assignments, they will be divided into those associated with the *trans*-ethylenic linkage followed by those from the metal and its coordinated atoms.

Assignments for the fundamental frequencies in the ethylenic linkage are presented in Table I. These assignments are in excellent agreement with the absorption bands previously reported for the *trans*-dihalo-

⁽¹⁾ E. E. Mercer, W. A. McAllister, and J. R. Durig, Inorg. Chem., 6, 1816 (1967).

⁽²⁾ W. P. Griffith and G. Wilkinson, J. Chem. Soc., 1629 (1959).

⁽³⁾ N. K. King and M. E. Winfield, J. Am. Chem. Soc., 83, 3366 (1961).

^{(4) &}quot;Tables of Wavenumbers for the Calibration of Infrared Spectrometers," IUPAC, Butterworth Inc., Washington, D. C., 1961.

⁽⁵⁾ H. M. Randall, D. M. Dennison, N. Ginsberg, and L. R. Weber, *Phys. Rev.*, **52**, 160 (1947).

ethylene compounds⁶⁻⁸ and are the basis for the present assignments. The 1518-cm⁻¹ band is assigned to ν_2 , the C=C stretching fundamental, since it shifts only slightly upon deuteration.

TABLE I								
VIBRATIONAL SPECTRAL DATA FOR ETHYLENIC COMPOUNDS ^a								
K6[C02(CN)10- K6[C02(CN)10-								
		$C_2H_2Cl_{2^8}$	C_2H_2E	r2 ⁹	$C_2H_2] \cdot 4$	H_2O	$C_2D_2]\cdot 4D_2O$	$C_2 D_2 B r_2{}^9$
Raman								
(ν_1	3073 s	3089	m	2940	m	2206 w	2323 m
	ν_2	1578 s	1581	m	1518	\mathbf{vs}	1506 s	1531 m
Ag	ν_3	1274 s	1249	vs	1237	\mathbf{vs}	952 vs	9 72 s
	<i>v</i> ₄	846 s	746	s	632	vs	586 s	670 m
l	ν_5	350 s	216	\mathbf{vs}	144	s	143 s	214 vs
$\mathbf{B}\mathbf{g}$	v 8	763 m	736	w	735	w	635 w	628 w
Infrared								
	V 6	895 vs	898	vs	973	m	725 m	658 s
Au	ν7	227 m	188	w	157	w		183 w
	v 9	3080 s	3085	vs	2 94 2	m	2182 m	2289 vs
	ν_{10}	1200 s	1165	s	1123	m	834 m	858 s
Bu	ν_{11}	817 vs	680	\mathbf{vs}	366	m	365 m	648 m
	ν_{12}	250 w	192	w	172	m		194 w
a ver	Abbre	eviations	used:	s,	strong;	m,	medi u m; w,	weak; v,

The assignment of the bands at 2940, 1237, 632, and 735 cm⁻¹ to ν_1 , ν_3 , ν_4 , and ν_3 , respectively, was clearly established from the deuterium isotope shifts. ν_5 was assigned to a very intense Raman band at 144 cm⁻¹ on the basis of its intensity and combinations found in the infrared spectrum.

The infrared fundamentals were assigned similarly to the Raman bands. The bands at 975, 2942, and 1123 cm⁻¹ are ν_6 , ν_9 , and ν_{10} , respectively. Modes ν_7 , ν_{11} , and ν_{12} are essentially motion independent of the hydrogens and do not shift significantly upon deuteration. Furthermore, ν_7 and ν_{12} are reported as weak bands in the previous spectral studies^{7,9} and are probably below the limits of normal instrumentation. There is a pair of bands at 157 and 172 cm⁻¹ which cannot be explained as any fundamental in the Co(CN)₅ part of the molecule from previous work on K₃[Co(CN)₆].¹⁰⁻¹³ On this basis these bands are suggested to arise from ν_7 and ν_{12} , respectively. It is felt that a reasonable assignment for the frequency of ν_{11} at 366 cm⁻¹ can be made on the basis of a small isotopic shift and combination bands. Again a comparison of this work to K₃[Co(CN)₆] shows this to be the only significant new band in this farinfrared region.

The infrared spectrum of $K_6[Co(CN)_5]_2C_2H_2 \cdot 4H_2O$ is shown in Figure 1. The tabulated data are presented in Table II. The assignments in the higher frequency region are reasonably straightforward from work done previously.¹⁰⁻¹⁴ The disputed band² at 1622 cm⁻¹ is made up of the $\delta(H-O-H)$ mode plus a strong combination arising from the $\nu_6 + \nu_4^8$ bands in the ethylenic linkage. It was possible to see a very weak absorption

TABLE II INFRARED DATA OF $K_6[Co(CN)_5]_2C_2H_2 \cdot 4H_2O^a$

Cm ⁻	~1 Intens	Assign- ment	Cm-1	Intens	Assign- ment
3590	s	H2O str	975	m	ν6
3510	vs	H ₂ O str	583	sh	MCN bend
3440	sh	H2O str	543	m	MCN bend
2942	m	C—H str	500	vw	144 + 360
2650	vw	543 + 2115	468	vw	Combination
2540	vw	432 + 2115	455	sh	M—CN str
2500	w	432 + 2092	432	m	M-CN str
2200	vw	78 + 2128	400	\mathbf{sh}	Combination
2115	s	C≡N str	375	sh	Combination
2092	vs	C≡N str	366	m	V11
2050	sh	¹³C≡N str	184	sh	Combination
1709	w	V6 + V8	172	m	ν_{12}
1645	sh	1517 + 144	157	w	¥7
1622	5	H ₂ O bend	146	bs	H ₂ O librations
1530	vvw	ν_2	56	m	Lattice
1123	m	ν_{10}			

^a Abbreviations used: s, strong; m, medium; w, weak; v, very; sh, shoulder; b, broad.

(9) J. Evans and H. Bernstein, Can. J. Chem., 33, 1171 (1955).

(10) L. H. Jones, J. Chem. Phys., 41, 856 (1964).

(12) I. Nakagawa and T. Shimanouchi, Specirochim. Acta, 18, 101 (1962).
(13) D. Bloor, J. Chem. Phys., 41, 2573 (1964).

⁽⁶⁾ N. C. Craig and E. A. Entemann, J. Chem. Phys., 36, 243 (1962).

⁽⁷⁾ K. S. Pitzer and J. L. Hollenberg, J. Am. Chem. Soc., 76, 1493 (1954).
(8) J. M. Dowling, P. G. Puranik, and A. G. Meister, J. Chem. Phys., 26, 233 (1957).

⁽¹¹⁾ L. H. Jones, ibid., 36, 1209 (1962).

⁽¹⁴⁾ H. Poulet and J. P. Mathieu, Spectrochim. Acta, 11, 932 (1959).

Figure 2.—Raman spectrum of solid $K_6[Co(CN)_5]_2C_2H_2 \cdot 4H_2O$.

at 1530 cm⁻¹ which does agree favorably with the Raman data for the C=C stretching frequency ν_2 . There are several bands below 200 cm⁻¹ in the farinfrared region. These could be combinations of other low-frequency bands, crystal lattice modes or the vibrations ν_7 and ν_{12} as suggested. There has been an attempt at least to suggest some possibilities for the appearance of the very weak bands in the spectrum. The band at 1530 cm⁻¹ in the infrared region has been proposed to arise from the ν (C=C) vibration which may be slightly activated by site symmetry; it may indeed be a combination band.

The Raman spectrum is presented in Figure 2 for potassium $sym-trans-\mu$ -ethyleno-bis(pentacyanocobal-tate(III)). Table III is a listing of the bands in the spectrum of the normal complex. The assignment of

 $\begin{array}{c} \text{Table III} \\ \text{Raman Data of } K_{\delta}[Co(CN)_{\delta}]C_{2}H_{2}\!\cdot\!4H_{2}O^{\alpha} \end{array}$

		**	· · · ·		-
Cm ⁻¹	Intens	Assign-	Cm ~1	Intens	Assign- ment
	Incens	ment		11100140	11010
2940	m	ν1, C—H str	632	vs	24
2128	vs	C≡≡N str	539	s	M—C≡≡N bend
2114	S	C≡≡N str	504	vw	M—C≡N bend
2105	s	C≡EN str	424	wsh	
2097	sh	C≡≡N str	409	s	M—CN str
1518	vs	ν_2 , C==C str	374	w	MCC str
1492	vw		359	w	M—CC str
1474	vvw	$2\nu_{8}$	226	vw	
1237	vs	23	162	w	
1192	vw		144	s	v 5
735	w	ν_8	78	vw	Lattice
675	wsh				

^a Abbreviations used: s, strong; m, medium; w, weak; v, very; sh, shoulder.

the Raman shifts are more difficult because of a lack of previous work reported in the literature. The 2128and 2114-cm⁻¹ bands are obviously from $\nu(C \equiv N)$. The band at 539 cm⁻¹ is most puzzling as are the splittings in the other bands. The relationship between these bands and the infrared bands forces the proposal that these bands are appearing due to the site symmetry of the molecule in the crystal lattice, causing a splitting of the 366-cm⁻¹ band. If so, the 539-, 424-, and the 359- and 374-cm⁻¹ bands can be related to the infrared bands at 543, 432, and 366 cm⁻¹, respectively. The band at 409 cm⁻¹ is the M–CN stretching frequency with the bending frequency at 504 cm⁻¹. This is in agreement with assignments for the spectrum of K₃-[Co(CN)₆),¹⁵ previously determined from combination bands in the infrared spectrum.

Summary and Conclusions

The assignments for the bands in the ethylenic linkage are rather satisfying except for ν_7 and ν_{12} . In all, the spectrum clearly shows the complex to be trans as expected from steric considerations. One important point mentioned earlier is the similarity in structure between $K_{6}[Co(CN)_{5}HCCHCo(CN)_{5}]$ and $[Co(NH_{3})_{5}]$ $ONNOCo(NH_3)_5](NO_3)_4$, if the latter is trans-hyponitrito bridged with the nitrogens coordinated. The probability of this structure for the hyponitrito complex, which was discounted in our earlier study, is further disproved by this study. The basis for this conclusion is the strong band resulting predominantly from the N–N stretching mode found in the spectrum. As in the ethylenic complex there should be no infraredactive stretching frequency at this center of symmetry. It, therefore cannot have a center of symmetry.

The M-CC stretching mode is assigned to the band at 370 cm^{-1} . There are few data on transition metal-carbon stretching frequencies for systems containing a normal covalent M-C bond other than for platinum and palladium.¹⁶

Acknowledgments.—The authors wish to thank Dr. J. R. Durig and the University of South Carolina for the use of the Raman instrument. Our thanks also go to Dr. E. E. Mercer for his helpful discussions.

(16) D. M. Adams, J. Chatt, and B. L. Shaw, J. Chem. Soc., 2047 (1960).

⁽¹⁵⁾ W. A. McAllister,, J. Chem. Phys., in press.